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Symmetry and Topology in Quantum Logic

Alexander Wilce1

A test space is a collection of non-empty sets, usually construed as the catalogue of
(discrete) outcome sets associated with a family of experiments. Subject to a sim-
ple combinatorial condition called algebraicity, a test space gives rise to a “quantum
logic”—that is, an orthoalgebra. Conversely, all orthoalgebras arise naturally from alge-
braic test spaces. In non-relativistic quantum mechanics, the relevant test space is the set
F(H) of frames (unordered orthonormal bases) of a Hilbert space H. The correspond-
ing logic is the usual one, i.e., the projection lattice L(H) of H. The test space F(H)
has a strong symmetry property with respect to the unitary group of H, namely, that
any bijection between two frames lifts to a unitary operator. In this paper, we consider
test spaces enjoying the same symmetry property relative to an action by a compact
topological group. We show that such a test space, if algebraic, gives rise to a compact,
atomistic topological orthoalgebra. We also present a construction that generates such
a test space from purely group-theoretic data, and obtain a simple criterion for this test
space to be algebraic.
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1. INTRODUCTION

The primordial quantum logic is the orthomodular lattice L(H) of projection
operators on a separable Hilbert space H. Familiar order-theoretic and partial-
algebraic generalizations include orthomodular lattices, orthomodular posets, or-
thoalgebras, and effect algebras. But L(H) is not just an order-theoretic object: it
also has a rich topological and covariant structure. It would seem reasonable to
study abstract quantum logics endowed with such structure. As a first observa-
tion, note that L(H), in its norm topology, is not a topological lattice—it is easy
to see that its meet and join operations are not continuous. However, L(H) is a
topological orthoalgebra in a natural sense.

This paper reviews and extends some recent work along these lines. Af-
ter sketching a theory of (mainly, compact) topological orthoalgebras, following
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Wilce (2005a, 2005b), I will present a construction that produces highly symmetric
compact topological orthoalgebras from group-theoretic data.

This depends on the representation of orthoalgebras as logics of test spaces.
Recall that a test space (Foulis et al., 1993) is a pair (X,A) where X is a non-
empty set and A is an irredundant covering of X by subsets, called tests (usually
understood as outcome sets for various experiments). If A satisfies a combinatorial
constraint called algebraicity, one can construct an orthoalgebra L(X,A) that
stands in roughly the same relationship to (X,A) that the projection lattice L(H)
of a Hilbert space H does to the set of orthonormal bases of H. Indeed, if X is
the unit sphere of H and A is the set of orthonormal bases for H, then (X,A) is
algebraic, and L(X,A) is canonically isomorphic to L(H). Now let E be a finite
set—think of it as the outcome set for some “standard” measurement—and let
S denote the group of all permutations of E. Let G be any group extending S,
and let K be a subgroup of G with K ∩ S = Sxo

(the stabilizer of xo in S). Then
the action of G on the space X := G/K of left K-cosets extends the action of S

on E. Let A denote the orbit of E in P(X). The test space (X,A) turns out to be
algebraic precisely when, for every A ⊆ E,FAFE\A = FE\AFA, where FA is the
subgroup of G fixing each point of A. Moreover, if G is compact and K is a closed
subgroup, the logic L(X,A) is in a natural way a compact, atomistic topological
orthoalgebra, G acts naturally on L, and the space of atoms of L is a transitive
G-space under this action.

2. BACKGROUND ON (TOPOLOGICAL) ORTHOALGEBRAS

An orthoalgebra (Foulis et al., 1992) is a structure (L,⊕, 0, 1) consisting
of a set L, two distinguished elements 0 and 1, and a commutative, associative,
cancellative partial operation ⊕ such that, for all a ∈ L,

• a ⊕ 0 = a;
• ∃ a′L with a ⊕ a′ = 1;
• a ⊕ a exists only if a = 0.

Any orthoalgebra L can be partially ordered by defining a ≤ b to mean that
b = a ⊕ c for some c ∈ L. If it exists, c is unique; we denote it by b 	 a. The
mapping a 
→ a′ is an orthocomplementation with respect to ≤, and a ⊕ b is
defined iff a ⊥ b, i.e., a ≤ b′. If defined, a ⊕ b is a minimal upper bound for
a, b,∈ L.

Proposition 2.1. (Foulis et al., 1992) Let (L,⊕, 0, 1) be an orthoalgebra. The
following are equivalent:

(a) (L,≤,′ ) is an OMP;
(b) ∀ a, b ∈ L, a⊥ b ⇒ a ⊕ b = a ∨ b;
(c) ∀ a, b, c ∈ L, a, b, c pairwise orthogonal ⇒ (a ⊕ b) ⊕ c exists.
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Condition (c) is called ortho-coherence. Thus, orthomodular posets can
equivalently be described as ortho-coherent orthoalgebras, and orthomodular
lattices, as lattice-ordered orthoalgebras.

If F = {x1, . . . , xn} is a finite subset of an orthoalgebra L, we say that F

is jointly orthogonal, or summable, iff
⊕

F := x1 ⊕ x2 · · · ⊕ xn exists. We call
an arbitrary subset A of L jointly orthogonal iff every finite set F ⊆ A is jointly
orthogonal. In this case, we define

⊕
A to be the join ∨F⊆E,Ffinite

⊕
F , provided

this exists. If every element of L has the form
⊕

A for some jointly orthogonal
set A of atoms of L, we say that L is atomistic.

Definition 2.2. A topological orthoalgebra (TOA) is an orthoalgebra L equipped
with a topology making the relation ⊥ ⊆ L × L closed, and the operations ⊕ :
⊥ → L and ′ : L → L, continuous.

One can show (Wilce, in press-b, Lemma 3.2) that if L is a TOA, the order
relation ≤ is closed in L × L, from which it follows that L is Hausdorff, and that
the mapping 	 :≤→ L is continuous. It is also worth noting that any compact TOA
is order complete, in the sense that every upwardly-directed net has a supremum
(Wilce, in press-b, Lemma 3.6). In particular, any compact, lattice-ordered TOA
is a complete lattice.

Example 2.3.

(a) Any Cartesian product of discrete orthoalgebras, with the product topology,
is a compact TOA.

(b) A topological orthomodular lattice (TOML), in the sense of Choe and
Greechie (1993), is an orthomodular, Hausdorff topological lattice, in
which the orthocomplementation ′ : L → L is continuous. Any TOML
L yields a TOA, since in that setting a ⊥ b iff a ≤ b′ iff a = a ∧ b′—a
closed relation, since L is Hausdorff and ∧,′ are continuous.

(c) The projection lattice L(H) of a Hilbert space H is a lattice-ordered TOA—
but not a TOML—with respect to either the norm or strong (equivalently,
weak) operator topology (Wilce, in press-b, Example 3.4).

As the example of L(H) illustrates, a lattice-ordered TOA need not be a topological
lattice. In view of this, the following result (Wilce, in press-b, Proposition 3.9) is
interesting.

Proposition 2.4. A compact Boolean TOA is a topological lattice, hence, a
topological Boolean algebra.

Proof: If L is any TOA, the set

M(L) := {(a, b, c) ∈ L3|c ≤ a, c ≤ b, and a 	 c⊥b}
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is closed in L3. If L is Boolean, M(L) is the graph of the mapping a, b 
→ a ∧ b.
Thus, ∧ has a closed graph. If L is compact, it follows that ∧ is continuous. �

A subset of an OA L is said to be compatible if it is contained in a Boolean
sub-OA of L. If every finite pairwise-compatible subset of L is compatible, L is
regular.2 Using Proposition 2.4, one can prove (Wilce, in press-b, Theorem 3.12)
that in a compact, regular TOA, every block is a compact Boolean algebra. From
this, it follows that such a TOA is atomistic.

Another condition that insures the atomicity of a compact TOA is that it have
an isolated zero. Call a subset of a TOA L totally non-orthogonal iff it contains no
two orthogonal elements. The following results are also from (Wilce, in press-b):

Lemma 2.5. Every non-zero element of a TOA L has a totally non-orthogonal
open neighborhood.

Proof: If a ∈ L is non-zero, then (a, a) /∈ ⊥. Since the relation ⊥ is closed in
L2, we can find open sets U and V with (a, a) ∈ U × V and (U × V ) ∩ ⊥ = ∅.
The set U ∩ V is a totally non-orthogonal open neighborhood of a. �

Proposition 2.6. Let L be a compact TOA with isolated zero. Then L is atomistic.
Moreover, there exists a positive integer n such that every element of L is the
orthogonal sum of at most n atoms.

Proof: If L is compact with 0 isolated, then L\{0} is compact. By Lemma 2.5,
we can cover it by finitely many totally non-orthogonal open sets U1, . . . , Un.
A pairwise-orthogonal subset of L\{0} meets Ui at most once, and so, has at most
n elements. It follows that no element of L can be expressed as the orthogonal
sum of more than n non-zero elements—whence, every element is the orthogonal
sum of at most n atoms. �

3. CONSTRUCTING (TOPOLOGICAL) OAs

There is a standard method, due to D. J. Foulis and C. H. Randall, for
constructing orthoalgebras from combinatorial structures called test spaces. We
outline this below (further discussion and motivation can be found in the papers
Foulis et al. (1992, 1993), or in the survey Wilce (2000)). We then show (following
Wilce, in press-a) how the construction of orthoalgebras from test spaces can be
topologized.

2 Of course, regularity implies orthocoherence, so a regular orthoalgebra is the same thing as a regular
OMP.
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3.1. Background on Test Spaces

A test space (X,A) consists of a set X and a covering A of X by non-empty
subsets, called tests. These are usually understood as outcome sets for various
experiments; accordingly, subsets of tests are called events. The rank of (X,A) is
the least upper bound of the cardinalities of tests E ∈ A. If this is finite, we say
that (X,A) has finite rank.

Let E = E(X,A) denote the set of all events of a test space (X,A). Call events
A,B ∈ E

• orthogonal, writing A⊥B, iff A ∩ B = ∅ and A ∪ B ∈ E ;
• complementary, writing A co B, iff A ∩ B = ∅ and A ∪ B ∈ A; and
• perspective, writing A ∼ B, iff they have a common complementary event.

One calls a test space (X,A) algebraic iff perspective events have the same
complementary events—equivalently, if every “hook” of events A co B co C co
D closes with A co D, as illustrated diagrammatically below:

If (X,A) is algebraic, then the perspectivity relation ∼ is an equivalence
relation on E , and the quotient set �(X,A) := E/ ∼ carries a partial operation

[A], [B] 
→ [A] ⊕ [B] := [A ∪ B],

well defined for orthogonal events A and B. In fact, (�,⊕) is an orthoalgebra,
called the logic of (X,A). Any orthoalgebra L can be constructed in this way: set
X = L\{0}, and let A be the collection of all finite orthopartitions of unity in L,
that is, finite jointly orthogonal sets E ⊆ X with

⊕
E = 1. Then (X,A) is an

algebraic test space, with �(X,A) canonically isomorphic to L via the mapping
[A] 
→ ⊕

A.
Let us now consider some examples.

3.1.1. Classical Test Spaces

The test spaces of interest in discrete classical probability theory consist of
just a single test. Let X = E and A = {E}. Then E = P(E), and A ∼ B iff A = B.
Hence, the logic �(X,A) is just P(E), regarded as a Boolean orthoalgebra.
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3.1.2. Two Non-Classical Test Spaces

Here are two simple, finite algebraic test spaces leading to non-Boolean
orthoalgebras. (a) Let X consist of the nodes in the graph (i), below and let A

consist of the sets of nodes lying along straight lines. This is algebraic by default.
The three corner nodes are pairwise, but not jointly, orthogonal; hence, � is a
non-orthocoherent orthoalgebra. (b) Let X consist of the points, and A of the lines
of the Fano plane, pictured below in graph (ii). Again (X,A) is algebraic, with a
non-orthocoherent logic.

3.1.3. Quantum Test Spaces

In non-relativistic quantum theory, the relevant test spaces are as follows.
Let X = X(H) be the unit sphere of a Hilbert space H—real or complex, finite
or infinite dimensional—and let F = F(H) be the collection of frames (unordered
orthonormal bases) of H. Then events of (X,F) are orthonormal subsets of H; two
events are perspective iff they have the same closed span, and complementary iff
their closed spans are complementary subspaces of H. Hence, (X,F) is algebraic,
with �(X,F) � L(H). We refer to (X,F) as the frame test space associated with H.
If phase relations are not important (in particular, if one is not considering multi-
stage experiments), one can replace X(H) with the set P (H) of one-dimensional
projection operators, and F(H), with the collection B(H) of maximal pairwise-
orthogonal sets of such projections. The pair (P,B) is again an algebraic test
space, which we will call the projective test space of H, with logic isomorphic to
the projection lattice of H.

3.2. Topological Test Spaces

We can topologize the apparatus of test spaces and logics, as follows (Wilce, in
press-a). Call two (distinct) outcomes x, y ∈ X of a test space (X,A) orthogonal,
and write x ⊥ y, iff {x, y} ∈ E .

Definition 3.1. A topological test space is a test space (X,A) where

(a) X is a Hausdorff space, and
(b) the relation ⊥ ⊆ X2 is closed.
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It is straightforward that every outcome x ∈ X has a totally non-orthogonal
open neighborhood—the proof is essentially the same as that of Lemma 2.5. Using
this, one can show that every event of a topological test space is a closed, discrete
set (Wilce, in press-a, Proposition 2.2(d)). Arguing as in the proof of Proposition
2.6, one can also show that a compact topological test space has finite rank.

We regard the space E = E(X,A) of events of a topological test space (X,A),
as a subspace of the hyperspace 2X of all closed subsets of X, in the Vietoris
topology (Illanes and Nadler, 1999). This is the weakest topology on 2X making
the sets

[U ] = {F ∈ 2X|F ∩ U �= ∅} and (U ) = {F ∈ 2X|F ⊆ U}
open for every open set U ⊆ X—or, equivalently, the weakest topology making
[U ] open if U is open, and closed if U is closed.3 Note that ∅ is isolated in 2X.

In following sections of this paper, we shall be concerned mainly with com-
pact, hence finite-rank, test spaces. The following notation and observations will
prove useful. If U1, . . . , Un are open sets in X, let 〈U1, . . . , Un〉 denote the Vietoris
open set

[U1] ∩ · · · ∩ [Un] ∩ (U1 ∪ · · · ∪ Un).

In other words, 〈U1, . . . , Un〉 is the set of all closed sets consisting of at
least one point from each of the sets U1, . . . , Un. Notice that if U1, . . . , Un are
pairwise disjoint, then any closed set belonging to 〈U1, . . . , Un〉 must have at least
n elements. It follows that, for every k ∈ N, the set of closed sets F ∈ 2X with
|F | > k is open in 2X.

Lemma 3.2. If X is any Hausdorff space, let Fk(X) denote the set of all non-
empty finite subsets of X of size ≤ k. Let q : Xk → Fk(X) be the surjection given
by q : (x1, . . . , xk) 
→ {x1, . . . , xk}. Then, we have the following:

(a) Fk(X) is closed in 2X.
(b) If B is a basis for the topology on X, then the sets 〈U1, . . . , Uk〉 ∩

Fk , where U1, . . . , Uk are (not necessarily distinct) open sets in B with
{U1, . . . , Uk} pairwise disjoint, form a basis for Fk .

(c) q is an open continuous mapping, hence, a quotient mapping.

Proof: Parts (a) and (b) are well known and straightforward. Proofs can be found
in Illanes and Nadler (1999). For part (c), let U1, . . . , Uk be open subsets of X.
Then

q(U1 × · · · × Uk) = 〈U1, . . . , Uk〉 ∩ Fk(X) ,

3 If X is a compact metric space, this coincides with the topology on 2X induced by the Hausdorff
metric.
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so q is an open mapping. Also, if U1, . . . , Uk are pairwise disjoint, so that
〈U1, . . . , Uk〉 ∩ Fk(X) is a basic open set in Fk(X), then

q−1(〈U1, . . . , Uk〉 ∩ Fk(X)) =
⋃

σ

Uσ (1) × · · · × Uσ (k)

where σ runs over all permutations of {1, 2, . . . , k}; thus, q is continuous. �

Lemma 3.3. In any topological test space, Ek is clopen in E in the latter’s relative
Vietoris topology.

Proof: If A = {a1, . . . , ak} is any k-element event, let V1, . . . , Vk be pairwise
disjoint, totally non-orthogonal open sets with ai ∈ Vi . ThenV = 〈V1, . . . , Vk〉 is a
Vietoris open neighborhood of A in 2X. Any event contained inV will be contained
in

⋃k
i=1 Vi , and will contain exactly one outcome from each Vi—hence, will have

exactly k outcomes. Thus, Ek is open. To see that it is clopen, let E>k denote the set
of events having more than k outcomes. If A ∈ E>k , we can find pairwise disjoint
open sets U1, . . . , Uk+1 with A ∈ [U1] ∩ · · · ∩ [Uk+1] =: U . Any event—indeed,
any closed set—B ∈ U must meet each set Ui . As these are pairwise disjoint,
|B| ≥ k + 1, whence, B ∈ E>k . Thus, E>k is open. Thus, we have finitely many
pairwise disjoint open sets {∅}, E1, E2, . . . , Ek, E>k partitioning E . It follows that
each of these sets is clopen in E . �

3.3. Logics of Algebraic Topological Test Spaces

If a topological test space (X,A) is algebraic, we can give its logic �(X,A)
the quotient topology induced by the natural surjection E → �, where E ⊆ 2X

has its relative Vietoris topology. We would like this to make it a topological
orthoalgebra in the sense of Definition 2.2. The following result, essentially proved
in Wilce (in press-a), gives some sufficient conditions for this to be so.

Call a topological test space (X,A) stably complemented if the set

Uco = {B ∈ E(X,A)|∃A ∈ U , A co B}
is open for every open set U ⊆ E .

Proposition 3.4. Let (X,A) be a compact, stably complemented, algebraic topo-
logical test space with E closed in 2X. Then �(X,A) is a compact TOA with
isolated zero.

Proof: That �(X,A) is a topological orthoalgebra is proved in Wilce (in press-a)
(Proposition 3.6). There, it is also shown (Lemma 4.5) that if (X,A) is stably com-
plemented, the canonical quotient mapping E → � is open. Since E is compact,
so is 2X in its Vietoris topology (Illanes and Nadler, 1999). Since E is closed in 2X,
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it, too is compact. Thus, � = E/ ∼ is compact. Since ∅ is isolated in 2X, and so
also in E , it follows (since the quotient mapping E → � is open) that 0 = [∅] is
isolated in �. �

The topological assumptions in Proposition 3.4 are quite strong. It would
be interesting to know if they could be weakened. However, as we shall see
in Section 5, they are automatically satisfied in the presence of sufficient
symmetry.

4. SYMMETRIC TEST SPACES

The quantum-mechanical test space (XH,F(H)) associated with a Hilbert
space H is marked by a very high degree of symmetry. Indeed, if E and F are two
orthonormal bases for H, then |E| = |F |, and any bijection f : E → F extends
uniquely to a unitary operator on H. In this section, we consider topological test
spaces having similar symmetry properties.

4.1. Background on G-Spaces

Let G be a topological group, and let K be a subgroup of G; let G/K be the
space of left cosets of K , with the quotient topology, and let π : G → G/K be
the canonical quotient mapping π (α) = αK . It is not difficult to show that π is
an open mapping, and that G/K is Hausdorff iff K is closed in G. A G-space
is a topological space X equipped with a continuous action G × X → X. If X is
transitive—that is, for any x, y ∈ X, there exists some α ∈ G with y = αx—then
for any base point xo ∈ X, we have a continuous surjection f : G → X given by
f : α 
→ αxo. If K ≤ G is the stabilizer of xo, then we have a canonical bijection
φ : G/K → X given by φ : αK 
→ αxo. φ is continuous (since φ ◦ π = f, f is
continuous, and π is open). Therefore, if G, and hence also G/K , is compact, and
X is Hausdorff, φ is a homeomorphism, whence, f : α 
→ αxo is open.

Definition 4.1. A G-test space is a topological test space (X,A) where X is a
G-space and αE A for every E ∈ A and every α ∈ G. A G-test space (X,A) is
symmetric iff G acts transitively on A, and the stabilizer, GE , of any test E ∈ A

acts transitively on E. We shall say that (X,A) is fully symmetric iff all tests have
the same cardinality (finite or otherwise), and any bijection between two tests is
effected by some element of G. If this element is always unique, then we shall say
that (X,A) is strongly symmetric.

As noted earlier, the test space of frames of a Hilbert space H is strongly
symmetric with respect to H’s unitary group U (H). The projective space of H is
fully, but not strongly symmetric with respect to U (H) (since a bijection between
two maximal orthogonal sets of one-dimensional projections determines a unitary
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operator only up to a choice of phase factors). The Fano plane test space of
Example 3.1.2(b) is strongly symmetric with respect to its automorphism group
(i.e., the collineation group of the Fano plane).

Notice that if (X,A) is G-symmetric, then X is a transitive G-space. If G is
compact, it follows that X is homeomorphic to G/K , where K is the stabilizer of
any point xo ∈ X. In particular, X is compact; hence, (X,A) has finite rank.

Proposition 4.2. Let (X,A) be a symmetric G-test space, where G is compact.
Then the natural action of G on E(X,A) is continuous.

Proof: Let E∗ denote the set of non-empty events of (X,A). Since the empty
event is both invariant and isolated, it will be enough to show that G’s action on
E∗ is continuous. Since G is compact, (X,A) has finite rank, say k. Thus, E∗ is
contained in the set Fk(X) of finite subsets of X having k or fewer elements. By
Lemma 3.2(c), the canonical surjection q : Xk → Fk(X) is continuous and open.
Giving Xk the natural diagonal G-action, q is equivariant. It follows easily that the
action of G on Fk(X)—and hence, on any invariant subset of Fk(X), e.g., E∗—is
also continuous. �

All discrete symmetric test spaces can be recovered as instances of the fol-
lowing construction.

Construction 4.3. Let E be a set (regarded, perhaps, as the outcome set for
some “standard” experiment), and let H be a group acting transitively on E.
Let G be any group extending H , and let K ≤ G be a subgroup extending the
stabilizer Hxo

of some fixed element xo ∈ E, with H ∩ K = Hxo
. Let X = G/K .

There is a natural H -equivariant injection E → X given by σxo 
→ σK , where
σ ∈ H . Identifying E with its image under this injection, we may suppose that
E ⊆ X. Now let A denote the orbit of E under G’s action on P(X): the pair
(X,A) is then a G-symmetric test space. Conversely, given a G-symmetric test
space (X,A), choose any test E ∈ A and any outcome xo ∈ E; setting H = GE

and K = Gxo
(the stabilizers, respectively, of E and xo in G), the preceding

construction reproduces (X,A).

Remarks

(a) Note that we can begin Construction 4.3 with purely group theoretic data.
Indeed, if G is a group and H,K are subgroups of G, set X = G/K and let
E be the orbit of K in X under the action of H , i.e., E = {ηK|η ∈ H } ⊆ X.
Setting A = {αE|α ∈ G}, as given earlier, (X,A) is a G-symmetric test
space.

(b) If we take H to act as the full symmetric group SE of all bijections on E,
the resulting symmetric test space (X,A) will be fully symmetric. It will
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be strongly symmetric iff, in addition, the only element of G fixing every
outcome in E is the identity element.

Thus far, our construction has yielded only a combinatorial object, that is, a
discrete symmetric test space. We now show that if G is a topological group and H

and K are closed subgroups with H\K closed, then the test space obtained from
G,H and K , as given earlier, is a symmetric topological test space with respect
to the quotient topology on X = G/K . We begin with a purely combinatorial

Lemma 4.4. Let (X,A) be G-symmetric, let xo ∈ E ∈ A be given, and let K =
Gxo

and H = GE , the stabilizers of xo and E, respectively. For each α ∈ G, let
xα = αxo. Then, for all α, β ∈ G, xα ⊥ xβ iff β−1α ∈ K(H\K)K .

Proof: As xα ⊥ xβ iff xβ−1α ⊥ xo, it is sufficient to show that xα ∈ x⊥
o iff

α ∈ K(H\K)K . Suppose first that α = βσγ where β, γ ∈ K and σ ∈ H\K . Then
xo ⊥ σxo so xo = βxo ⊥βσxo = βσγ xo = αxo. Conversely, suppose xα ⊥ xo.
Then xα �= xo, and there exists some test Eβ := βE ∈ A with xo, xα ∈ Eβ . It
follows that there exist σ, σ ′ ∈ H with (i) xα = βσxo and (ii) xo = βσ ′xo. From
(ii), we have βσ ′ ∈ K , whence, β ∈ Kσ′−1

. Now (i) requires that xα = βσxo �= xo

so σ
′−1σ ∈ H\K . We also have from (i) that (βσ )−1α ∈ K , whence, α ∈ βσK ⊆

Kσ
′−1σK ⊆ K(H\K)K . �

Theorem 4.5. Let G be a compact topological group and H,K two subgroups
of G. Form the test space (X,A) as in Construction 4.3, with X = G/K having
the quotient topology. Then (X,A) is a topological test space iff both K and H\K
are closed in G.

Proof: As remarked earlier, G/K is Hausdorff iff K is closed in G. It remains
to show that the orthogonality relation on X is closed in X × X iff H\K is closed
in G. Notice that, since G is compact and acts continuously on both X and A, both
of the stabilizers K = Gxo

and H = GEo
are compact, hence, closed. If H\K is

closed, then certainly so is K(H\K)K (as this is the image of the compact set
K × (H\K) × K under the continuous mapping (α, β, γ ) 
→ αβγ ). Thus, so is
the set {(α, β)|β−1α ∈ K(H\K)}. Finally, since G is compact, the image of this
set under the quotient mapping (α, β) 
→ (xα, yβ ) is closed. But this image is just
the orthogonality relation on X. For the converse, suppose ⊥ is closed. Then
so is K(H\K)K , by Lemma 4.4. It follows that (H\K) is likewise closed. For
suppose ηi → η in H , with ηi /∈ K . If η ∈ H ∩ K , then we have η−1ηiη → η and
η−1ηiη ∈ K(H\K)K , whence, η ∈ K(H\K)K . Thus, we can find φ,ψ ∈ K and
η′ ∈ H\K with η = φη′ψ . Then η′ = φ−1ηψ−1 ∈ K , a contradiction. �

Notice that the condition that H\K be closed will certainly hold if H is
discrete. This is the case, for instance, for the frame test space of an n-dimensions
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Hilbert space H with respect to U (n), since here the stabilizer of an orthonormal
basis E is isomorphic to the group of permutations of E.

5. FULLY SYMMETRIC TEST SPACES

If (X,A) is fully G-symmetric, then G acts transitively on each of the sets
Ek of k-element events. To see this, suppose A,B ∈ Ek: choose tests E ⊇ A and
F ⊇ B and a bijection f : A → B. Since |E| = |F |, we can extend f to a bijection
f̄ : E → F ; by assumption, this is induced by a group element α ∈ G. But then
αA = B. It follows from this, together with the general remarks on G-spaces at
the beginning of Section 4, that, for each A ∈ E , the mapping G 
→ Ek given by
α 
→ αA, is continuous and open.

Theorem 5.1. Let (X,A) be fully G-symmetric, with G compact. Then (X,A) is
stably complemented, and E is closed in 2X.

Proof: As G is compact, (X,A) has finite rank, say rank n. By Lemma 3.3,
each set Ek of k-element events, k = 0, . . . , n, is clopen in E , it suffices to show
that, for every k = 0, . . . , n, if U is open in Ek , then U co is open in En−k . As
noted earlier, the mapping G → Ek given by α 
→ αA is continuous and open for
each A ∈ Ek . Thus, if U is an open neighborhood of an event A ∈ Ek , then the set
U = {α ∈ G|αA ∈ U} is open in G. Let B co A. Then for every α ∈ U, αB co
αA ∈ U , i.e., αB ∈ U co. In other words, the open set U · B = {αB|α ∈ U} about
B is contained in U co. Thus, U co is open in En−k .

It remains to show that E is closed in 2X. It will suffice to show that each
clopen set Ek is closed in Fk(X) (since, by Lemma 3.2(a), the latter is closed in
2X). Suppose, then, that Ai is a net in Ek converging in Fk(X) to a set A. Since G

acts transitively on Ek , we can find a net αi in G with Ai = αiAo, where Ao is some
arbitrary “base” event in Ek . Since G is compact, we can choose a convergent sub-
net αi ′ → α ∈ G. By the continuity of the map G → Fk(X) given by α 
→ αAo,
we have Ai ′ = αi ′Ao → αAo ∈ E , in the latter’s Vietoris topology. Since 2X is
Hausdorff, it follows that A = αAo ∈ E . �

Thus, the topological assumptions of Proposition 3.4 are automatically satis-
fied for any fully G-symmetric test space with G compact. If (X,A) is algebraic, its
follows that its logic L = �(X,A) is a compact TOA with isolated zero—hence,
in particular, that L is atomistic. Indeed, the atoms of L are precisely the points
of the form p({x}), where x ∈ X. It is easy to see that G continues to act on L by
continuous automorphisms, and that the atoms of L form a transitive G-space.

The question remains: When is a fully G-symmetric test space algebraic?

Theorem 5.2. Let (X,A) be a fully-symmetric G-test space. Choose and fix
E ∈ A. If A ⊆ E, write A′ for E\A, and let FA be the subgroup of G fixing each
x ∈ A. Then (X,A) is algebraic iff, for every A ⊆ E,FAFA′ = FA′FA.
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Proof: (⇒) Suppose (X,A) is algebraic. If α ∈ FA and α′ ∈ FA′ , we obtain a
“hook” of events α−1A′ co A co A′ co α′A (see graph (i) later). Since (X,A)
is algebraic, α−1A′ co α′A. Let α−1A′ ∪ α′A =: F ∈ A. Since |α−1A′| = |A′|
and |α′A| = |A|, and since every bijection E → F extends to an element of G,
we can find β ∈ G with βx = α−1x for every x ∈ A′ and βx = α′x for every
x ∈ A. Then αβ ∈ FA′ and α

′−1βFA—whence, β−1α′ ∈ FA as well. Thus, αα′ =
(αβ)(β−1α′) ∈ FA′FA. Thus, FAFA′ ⊆ FA′FA.

(⇐) Now suppose that FAFA′ = FA′FA for every A ⊆ E. To show (X,A)
is algebraic, it is sufficient to consider configurations of the form A co A′ co
B co C, with A ⊆ E, as in graph (ii) later (as any hook in E is a translate of
one of these). We wish to show that A co C. Now, B = α′A for some α′ ∈ FA′ ,
and C = βA′ for some β ∈ FB . But FB = Fα′A = α′FAα

′−1 ⊆ FA′FAFA′ . Since
FA′FA = FAFA′ , we have FA′FAFA′ ⊆ FAFA′ . Thus, β ∈ FB ⇒ β = αα′′ where
α ∈ FA and α′′ ∈ FA′ . But then C = βA′ = αA′—whence, A co C. �

Example 5.3. As an illustration of the preceding result, let G = U (H), the unitary
group of a Hilbert space H, and let E be an orthonormal basis for H. If A ⊆ E,
let [A] be the subspace spanned by A. Then FA is the group of unitaries of
the form W = 1[A] ⊕ U , where 1[A] is the identity operator on [A] and U is
any unitary operator on [A]⊥. Likewise, FA′ consists of unitaries of the form
W ′ = V ⊕ 1[A]⊥ , V a unitary on [A]. Since WW ′ = W ′W for any two such W

and W ′, we have FAFA′ = FA′FA.

5.1. Problems for Further Study

Here, as in the earlier papers Wilce (in press-a, in press-b), I have tried to
make a case for the study of what may be called topological quantum structures. A
great deal remains to be done. For instance, it would be good to know how much of
the theory sketched here can be made to work without compactness assumptions.
In particular, referring to Proposition 2.4: need a non-compact Boolean TOA be a
topological Boolean algebra?4

In a different direction, Theorem 5.2 suggests the project of classifying, for a
given compact group G, all fully G-symmetric algebraic topological test spaces of

4 Added in proof: The answer is no. John Harding has recently constructed an ingenious counter
example.
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a given finite rank. It would be especially interesting to have such a classification
for compact Lie groups.
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